返回

第89章 理论和应用

首页
关灯
护眼
字:
上一页 进书架 下一页 回目录
    第89章 理论和应用 (第2/3页)

不熟,但怎么也算是听过对方课的,也算是半个学生。

    在她看来,韩辞在AI数学和优化问题方面大有可为。

    纯数学只要不解决大难题,终究是难出成果的,而搭上AI现在飞速发展的顺风车,则前途一片光明。

    比如韩辞现在在讲述的残差思想,在数学和物理界都算不上什么高深的东西。

    可结合孟繁岐的应用成果来展示,则大大的加分,意义非凡。

    不同领域的交叉地带,一向是出成果的捷径。

    台上,韩辞的讲述仍在继续。

    “我们假设一个简单的高维积分问题,计算一个可以表示为期望的积分I(g),先通过有限求和Im(g)来逼近。

    若改用蒙特卡洛办法,从特定的独立同分布的抽样样本中选择N个样本,则有恒等式E(I(g)- Im(g))^2 = var(g)/N, var(g)= Eg^2 -(Eg)^2)

    这告诉我们收敛速度与维度无关。”

    “若我们先用传统傅里叶变换,再用均匀的离散傅里叶变换来逼近。其误差则~m^-a/d,必然被维度所影响。

    可,若一个函数可以表示成期望的形式,而令所有样本为独立同分布样本,则有拟合差值为var(f)/m,与维度无关。

    若将两层神经网络写作该形式,则意味着,这一类期望函数均可由两层神经网络逼近,且其逼近速度与维度无关。”

    “让我们转向离散动力系统的视角,举一个随机控制问题。

    动力模型Zl+1 = Zl + g1(z1,a1)+ n,其中z为状态,a为控制信号,n为噪声。若我们想寻找一个反馈控制信号函数,而通过求解动态规划贝尔曼方程,则必然会遭遇维度灾难问题。

    该过程的性质,其实与残差网络等同。

    ..................”

    “最后,我总结。深度学习根本上是高维中的数学问题。神经网络是高维函数逼近的有效手段,而残差网络则是更加容易优化的高维函数。

    这意味

    (本章未完,请点击下一页继续阅读)
上一页 回目录 下一页